enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The first 128 symbols of the Fibonacci sequence has an entropy of approximately 7 bits/symbol, but the sequence can be expressed using a formula [F(n) = F(n−1) + F(n−2) for n = 3, 4, 5, ..., F(1) =1, F(2) = 1] and this formula has a much lower entropy and applies to any length of the Fibonacci sequence.

  3. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    [9] [10] Assuming a simple ensemble of classifiers is assembled via averaging the outputs, then the amended cross-entropy is given by = (,) (,) where is the cost function of the classifier, is the output probability of the classifier, is the true probability to be estimated, and is a parameter between 0 and 1 that defines the 'diversity' that ...

  4. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Or, in the words of G. N. Lewis writing about chemical entropy in 1930, "Gain in entropy always means loss of information, and nothing more". To be more concrete, in the discrete case using base two logarithms, the reduced Gibbs entropy is equal to the average of the minimum number of yes–no questions needed to be answered in order to fully ...

  5. Orders of magnitude (entropy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(entropy)

    9.5699 × 10 −24 J⋅K −1: Entropy equivalent of one bit of information, equal to k times ln(2) [1] 10 −23: 1.381 × 10 −23 J⋅K −1: Boltzmann constant, entropy equivalent of one nat of information. 10 1: 5.74 J⋅K −1: Standard entropy of 1 mole of graphite [2] 10 33: ≈ 10 35 J⋅K −1: Entropy of the Sun (given as ≈ 10 42 ...

  6. Landauer's principle - Wikipedia

    en.wikipedia.org/wiki/Landauer's_principle

    Landauer's principle is a physical principle pertaining to a lower theoretical limit of energy consumption of computation.It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings. [1]

  7. Quantum fluctuation - Wikipedia

    en.wikipedia.org/wiki/Quantum_fluctuation

    3D visualization of quantum fluctuations of the quantum chromodynamics (QCD) vacuum [1]. In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, [2] as prescribed by Werner Heisenberg's uncertainty principle.

  8. Crocco's theorem - Wikipedia

    en.wikipedia.org/wiki/Crocco's_Theorem

    Crocco's theorem is an aerodynamic theorem relating the flow velocity, vorticity, and stagnation pressure (or entropy) of a potential flow. Crocco's theorem gives the relation between the thermodynamics and fluid kinematics. The theorem was first enunciated by Alexander Friedmann for the particular case of a perfect gas and published in 1922: [1]

  9. Uncertainty coefficient - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_coefficient

    In statistics, the uncertainty coefficient, also called proficiency, entropy coefficient or Theil's U, is a measure of nominal association. It was first introduced by Henri Theil [ citation needed ] and is based on the concept of information entropy .