Search results
Results from the WOW.Com Content Network
Dogs have ear mobility that allows them to rapidly pinpoint the exact location of a sound. Eighteen or more muscles can tilt, rotate, raise, or lower a dog's ear. A dog can identify a sound's location much faster than a human can, as well as hear sounds at four times the distance. [41] Dogs can lose their hearing from age or an ear infection. [42]
Trills involve the vibration of one of the speech organs. Since trilling is a separate parameter from stricture, the two may be combined. Increasing the stricture of a typical trill results in a trilled fricative. Trilled affricates are also known. Nasal airflow may be added as an independent parameter to any speech sound.
The supraglottal cavity or the orinasal cavity is divided into an oral subcavity (the cavity from the glottis to the lips excluding the nasal cavity) and a nasal subcavity (the cavity from the velopharyngeal port, which can be closed by raising the velum). The subglottal cavity consists of the trachea and the lungs.
Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane. The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2]
The macula of utricle (macula acustica utriculi) is a small (2 by 3 mm) thickening lying horizontally on the floor of the utricle where the epithelium contains vestibular hair cells that allow a person to perceive changes in latitudinal acceleration as well as the effects of gravity; it receives the utricular filaments of the acoustic nerve.
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates , the inner ear is mainly responsible for sound detection and balance. [ 1 ] In mammals , it consists of the bony labyrinth , a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [ 2 ]
The symbol in the International Phonetic Alphabet that represents this sound is ʡ . Epiglottal and pharyngeal consonants occur at the same place of articulation. Esling (2010) describes the sound covered by the term "epiglottal plosive" as an "active closure by the aryepiglottic pharyngeal stricture mechanism" – that is, a stop produced by ...
Auditory ossicles from a deep dissection of the tympanic cavity. Sound waves travel through the ear canal and hit the tympanic membrane, or eardrum. This wave information travels across the air-filled middle ear cavity via a series of delicate bones: the malleus (hammer), incus (anvil) and stapes (stirrup).