enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Hadamard_matrix

    Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .

  3. Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Hadamard_transform

    The Hadamard transform H m is a 2 m × 2 m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2 m real numbers x n into 2 m real numbers X k. The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.

  4. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  5. Pseudo-Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Pseudo-Hadamard_transform

    The pseudo-Hadamard transform is a reversible transformation of a bit string that provides cryptographic diffusion. See Hadamard transform . The bit string must be of even length so that it can be split into two bit strings a and b of equal lengths, each of n bits.

  6. Paley construction - Wikipedia

    en.wikipedia.org/wiki/Paley_construction

    The size of a Hadamard matrix must be 1, 2, or a multiple of 4. The Kronecker product of two Hadamard matrices of sizes m and n is an Hadamard matrix of size mn . By forming Kronecker products of matrices from the Paley construction and the 2 × 2 matrix,

  7. Regular Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Regular_Hadamard_matrix

    While the order of a Hadamard matrix must be 1, 2, or a multiple of 4, regular Hadamard matrices carry the further restriction that the order must be a square number. The excess, denoted E(H ), of a Hadamard matrix H of order n is defined to be the sum of the entries of H. The excess satisfies the bound |E(H )| ≤ n 3/2.

  8. Complex Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Complex_Hadamard_matrix

    Two complex Hadamard matrices are called equivalent, written , if there exist diagonal unitary matrices , and permutation matrices, such that =. Any complex Hadamard matrix is equivalent to a dephased Hadamard matrix, in which all elements in the first row and first column are equal to unity.

  9. Fast Walsh–Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Walsh–Hadamard...

    In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHT h) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order n = 2 m {\displaystyle n=2^{m}} would have a computational complexity of O( n 2 {\displaystyle n^{2}} ) .