Search results
Results from the WOW.Com Content Network
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base.
If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume [2] =. The altitude h satisfies [3] = + +. The area of the base is given by [4] =. The solid angle at the right-angled vertex, from which the opposite face (the base) subtends an octant, has measure π /2 steradians, one eighth of the surface area of a unit sphere.
The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle). In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex.
If is the radius of the incircle of the triangle, then the triangle can be broken into three triangles of equal altitude and bases , , and . Their combined area is A = 1 2 a r + 1 2 b r + 1 2 c r = r s , {\displaystyle A={\tfrac {1}{2}}ar+{\tfrac {1}{2}}br+{\tfrac {1}{2}}cr=rs,} where s = 1 2 ( a + b + c ...
If the triangle ABC is oblique (does not contain a right-angle), the pedal triangle of the orthocenter of the original triangle is called the orthic triangle or altitude triangle. That is, the feet of the altitudes of an oblique triangle form the orthic triangle, DEF .
Any triangle, in which the altitude equals the geometric mean of the two line segments created by it, is a right triangle. The theorem can also be thought of as a special case of the intersecting chords theorem for a circle, since the converse of Thales' theorem ensures that the hypotenuse of the right angled triangle is the diameter of its ...
For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]
The altitude to the hypotenuse is the geometric mean (mean proportional) of the two segments of the hypotenuse. [2]: 243 Each leg of the triangle is the mean proportional of the hypotenuse and the segment of the hypotenuse that is adjacent to the leg. In equations, =, (this is sometimes known as the right triangle altitude theorem)