enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x ...

  3. Möbius inversion formula - Wikipedia

    en.wikipedia.org/wiki/Möbius_inversion_formula

    Here the sums extend over all positive integers n which are less than or equal to x. This in turn is a special case of a more general form. If α(n) is an arithmetic function possessing a Dirichlet inverse α −1 (n), then if one defines

  4. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    A path from x to y exists in the Hasse diagram representing R div. An edge from x to y exists in the directed graph representing R div. In the Boolean matrix representing R div, the element in line x, column y is "". As another example, define the relation R el on R by x R el y if x 2 + xy + y 2 = 1.

  5. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.

  6. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : XX that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  7. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    is invertible, since the derivative f′(x) = 3x 2 + 1 is always positive. If the function f is differentiable on an interval I and f′(x) ≠ 0 for each x ∈ I, then the inverse f −1 is differentiable on f(I). [17] If y = f(x), the derivative of the inverse is given by the inverse function theorem,

  8. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  9. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]