Search results
Results from the WOW.Com Content Network
Out of a total of 28,400 terawatt-hours (96.8 × 10 ^ 15 BTU) of energy used in the US in 1999, 10.5% was used in food production, [3] with the percentage accounting for food from both producer and primary consumer trophic levels. In comparing the cultivation of animals versus plants, there is a clear difference in magnitude of energy efficiency.
Beginning with photosynthesis, water (blue) and carbon dioxide (white) from the air are taken in with solar energy (yellow), and are converted into plant energy (green). [7] 100×10 15 grams of carbon/year fixed by photosynthetic organisms, which is equivalent to 4×10 18 kJ/yr = 4×10 21 J/yr of free energy.
Flotation of objects denser than water occurs when the object is nonwettable and its weight is small enough to be borne by the forces arising from surface tension. [5] For example, water striders use surface tension to walk on the surface of a pond in the following way. The nonwettability of the water strider's leg means there is no attraction ...
Van der Waals forces are often among the weakest chemical forces. For example, the pairwise attractive van der Waals interaction energy between H atoms in different H 2 molecules equals 0.06 kJ/mol (0.6 meV) and the pairwise attractive interaction energy between O atoms in different O 2 molecules equals 0.44 kJ/mol (4.6 meV). [9]
Hybrid Sankey diagram of 2011 U.S. interconnected water and energy flows. The water-energy nexus is the relationship between the water used for energy production, [1] including both electricity and sources of fuel such as oil and natural gas, and the energy consumed to extract, purify, deliver, heat/cool, treat and dispose of water (and wastewater) sometimes referred to as the energy intensity ...
Heat flowing from hot water to cold water. The first law of thermodynamics provides the definition of the internal energy of a thermodynamic system, and expresses its change for a closed system in terms of work and heat. [9] It can be linked to the law of conservation of energy. [10]
Two common forms of latent heat are latent heat of fusion and latent heat of vaporization . These names describe the direction of energy flow when changing from one phase to the next: from solid to liquid, and liquid to gas. In both cases the change is endothermic, meaning that the system absorbs energy. For example, when water evaporates, an ...
The equation is only valid for creeping flow, i.e. in the slowest limit of laminar flow. The equation was derived by Kozeny (1927) [ 1 ] and Carman (1937, 1956) [ 2 ] [ 3 ] [ 4 ] from a starting point of (a) modelling fluid flow in a packed bed as laminar fluid flow in a collection of curving passages/tubes crossing the packed bed and (b ...