Search results
Results from the WOW.Com Content Network
It can occur during shallow dives, but does not usually become noticeable at depths less than about 30 meters (100 ft). The effect is consistently greater for gases with a higher lipid solubility, and there is good evidence that the two properties are mechanistically related. [37] As depth increases, the mental impairment may become hazardous.
The absolute (dynamic) viscosity of water is higher (order of 100 times) than that of air. [14] This increases the drag on an object moving through water, and more effort is required for propulsion in water than air relative to the speed of movement. Viscosity also affects the work of breathing. [15]
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse. [2]
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
In continuum mechanics, time-dependent viscosity is a property of fluids whose viscosity changes as a function of time. The most common type of this is thixotropy , in which the viscosity of fluids under continuous shear decreases with time; the opposite is rheopecty , in which viscosity increases with time.
The specific depth (or proximity to a boundary) at which the hydrodynamic added mass is affected depends on the body's geometry and location and shape of a boundary (e.g., a dock, seawall, bulkhead, or the seabed). The hydrodynamic added mass associated with a freely sinking object near a boundary is similar to that of a floating body.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.