Search results
Results from the WOW.Com Content Network
An enhancer localized in a DNA region distant from the promoter of a gene can have a very large effect on gene expression, with some genes undergoing up to 100-fold increased expression due to an activated enhancer. [32] Enhancers are regions of the genome that are major gene-regulatory elements.
In bacteria, the coding regions typically take up 88% of the genome. [1] The remaining 12% does not encode proteins, but much of it still has biological function through genes where the RNA transcript is functional (non-coding genes) and regulatory sequences, which means that almost all of the bacterial genome has a function. [1]
Enhancers or cis-regulatory modules/elements (CRM/CRE) are non-coding DNA sequences containing multiple activator and repressor binding sites. Enhancers range from 200 bp to 1 kb in length and can be either proximal, 5’ upstream to the promoter or within the first intron of the regulated gene, or distal, in introns of neighboring genes or ...
Enhancer RNAs (eRNAs) represent a class of relatively long non-coding RNA molecules (50-2000 nucleotides) transcribed from the DNA sequence of enhancer regions. They were first detected in 2010 through the use of genome-wide techniques such as RNA-seq and ChIP-seq .
Regulatory sequence controls when and where expression occurs for the protein coding region (red). Promoter and enhancer regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to remove introns (light grey) and add a 5' cap and poly-A tail (dark grey).
These sequence regions can either be next to the transcribed region (the promoter) or separated by many kilobases (enhancers and silencers). [8] The promoter is located at the 5' end of the gene and is composed of a core promoter sequence and a proximal promoter sequence.
Enhancers are DNA sequences found in 5′ flanking regions of eukaryotic genes that affect transcription. If a transcription factor binds to an enhancer in a 5′ flanking region, the DNA strand bends in a way that the transcription factor that is bound to the enhancer can also bind the promoter of a gene.
In humans, intergenic regions comprise about 50% of the genome, whereas this number is much less in bacteria (15%) and yeast (30%). [4] As with most other non-coding DNA, the GC-content of intergenic regions vary considerably among species. For example in Plasmodium falciparum, many intergenic regions have an AT content of 90%. [5]