Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 ...
For example, potassium oxide is about 83% potassium by weight, while potassium chloride is only 52%. Potassium chloride provides less potassium than an equal amount of potassium oxide. Thus, if a fertilizer is 30% potassium chloride by weight, its standard potassium rating, based on potassium oxide, would be only 18.8%.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
The following list has substances known to be gases, but with an unknown boiling point. Fluoroamine; Trifluoromethyl trifluoroethyl trioxide CF 3 OOOCF 2 CF 3 boils between 10 and 20° [142] Bis-trifluoromethyl carbonate boils between −10 and +10° [37] possibly +12, freezing −60° [143]
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
R is the ideal gas constant. M is the molar mass of the solvent. T f is the freezing point of the pure solvent in kelvin. ΔH fus is the molar enthalpy of fusion of the solvent. The K f for water is 1.853 K kg mol −1. [1]
Four oxides of potassium are well studied: potassium oxide (K 2 O), potassium peroxide (K 2 O 2), potassium superoxide (KO 2) [25] and potassium ozonide (KO 3). The binary potassium-oxygen compounds react with water forming KOH. KOH is a strong base. Illustrating its hydrophilic character, as much as 1.21 kg of KOH can dissolve in a single ...
R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent. Through the procedure called ebullioscopy, a known constant can be used to calculate an unknown molar mass. The term ebullioscopy means "boiling measurement" in Latin.