Search results
Results from the WOW.Com Content Network
Stress-strain curve: Plot the calculated stress versus the applied strain to create a stress-strain curve. The slope of the initial, linear portion of this curve gives Young's modulus. Mathematically, Young's modulus E is calculated using the formula E=σ/ϵ, where σ is the stress and ϵ is the strain. Shear modulus (G)
The stress and strain can be normal, shear, or a mixture, and can also be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stress–strain curve typically refers to the relationship between axial normal stress and ...
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression. Young's modulus (or Young modulus ) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.
In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...
In a molecule, strain energy is released when the constituent atoms are allowed to rearrange themselves in a chemical reaction. [1] The external work done on an elastic member in causing it to distort from its unstressed state is transformed into strain energy which is a form of potential energy.
The term stress analysis is used throughout this article for the sake of brevity, but it should be understood that the strains, and deflections of structures are of equal importance and in fact, an analysis of a structure may begin with the calculation of deflections or strains and end with calculation of the stresses.
In solid mechanics, the tangent modulus is the slope of the stress–strain curve at any specified stress or strain. Below the proportional limit (the limit of the linear elastic regime) the tangent modulus is equivalent to Young's modulus. Above the proportional limit the tangent modulus varies with strain and is most accurately found from ...
It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured. The strain is the ratio of two lengths, so it is a dimensionless quantity (a number that does not depend on the choice of measurement units).