Search results
Results from the WOW.Com Content Network
The commercial production of amino acids usually relies on mutant bacteria that overproduce individual amino acids using glucose as a carbon source. Some amino acids are produced by enzymatic conversions of synthetic intermediates. 2-Aminothiazoline-4-carboxylic acid is an intermediate in the industrial synthesis of L-cysteine for example.
The addition of the two molecules typically proceeds in a step-wise fashion to the addition product, usually in equilibrium, and with loss of a water molecule (hence the name condensation). [3] The reaction may otherwise involve the functional groups of the molecule, and is a versatile class of reactions that can occur in acidic or basic ...
The two joined amino acids are called a dipeptide. The amide bond is synthesized when the carboxyl group of one amino acid molecule reacts with the amino group of the other amino acid molecule, causing the release of a molecule of water (H 2 O), hence the process is a dehydration synthesis reaction.
Alkenes can be made from alcohols by dehydration. This conversion, among others, is used in converting biomass to liquid fuels. [2] The conversion of ethanol to ethylene is a fundamental example: [3] [4] CH 3 CH 2 OH → H 2 C=CH 2 + H 2 O. The reaction is accelerated by acid catalysts such as sulfuric acid and certain zeolites.
In this dehydration synthesis, a water molecule is removed and the peptide bond connects the nitrogen of one amino acid's amino group to the carbon of the other's carboxylic acid group. The resulting molecule is called a dipeptide, and short stretches of amino acids (usually, fewer than thirty) are called peptides or polypeptides.
In biochemistry, dehydrogenase enzymes can catalyze the reductive amination of α-keto acids and ammonia to yield α-amino acids. Reductive amination is predominantly used for the synthesis of the amino acid glutamate starting from α-ketoglutarate, while biochemistry largely relies on transamination to introduce nitrogen in the other amino ...
Amino acids can have multiple codons that correspond to them. Ribosomes do not directly attach amino acids to mRNA codons. They must utilize tRNAs (transfer RNAs) as well. Transfer RNAs can bind to amino acids and contain an anticodon which can hydrogen bind to an mRNA codon. [13] The process of bind an amino acid to a tRNA is known as tRNA ...
The citric acid cycle (Krebs cycle) is a good example of an amphibolic pathway because it functions in both the degradative (carbohydrate, protein, and fatty acid) and biosynthetic processes. [2] The citric acid cycle occurs on the cytosol of bacteria and within the mitochondria of eukaryotic cells.