enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    A complex rational function with degree one is a Möbius transformation. Rational functions are representative examples of meromorphic functions. [3] Iteration of rational functions on the Riemann sphere (i.e. a rational mapping) creates discrete dynamical systems. [4] Julia sets for rational maps

  3. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  4. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The variables are treated as "dummy" or "bound" variables which are substituted for numbers in the process of integration. The integral of a real-valued function of a real variable y = f(x) with respect to x has geometric interpretation as the area bounded by the curve y = f(x) and the x-axis.

  5. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).

  6. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers that can be expressed as a ratio of two integers. [93] Most arithmetic operations on rational numbers can be calculated by performing a series of integer arithmetic operations on the numerators and the denominators of the involved numbers.

  7. Cantor's isomorphism theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_isomorphism_theorem

    The rational numbers in the open unit interval are an example. Another example is the set of dyadic rational numbers, the numbers that can be expressed as a fraction with an integer numerator and a power of two as the denominator. By Cantor's isomorphism theorem, the dyadic rational numbers are order-isomorphic to the whole set of rational numbers.

  8. Algebraic equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_equation

    In mathematics, an algebraic equation or polynomial equation is an equation of the form =, where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x 5 − 3 x + 1 = 0 {\displaystyle x^{5}-3x+1=0} is an algebraic equation with integer coefficients and

  9. Function of a real variable - Wikipedia

    en.wikipedia.org/wiki/Function_of_a_real_variable

    For many commonly used real functions, the domain is the whole set of real numbers, and the function is continuous and differentiable at every point of the domain. One says that these functions are defined, continuous and differentiable everywhere. This is the case of: All polynomial functions, including constant functions and linear functions