Search results
Results from the WOW.Com Content Network
The calculator uses its logic to attempt to isolate the value of the required variable, after prompting the user for the values of the other variables. Since this process takes time, and the equation may have more than one solution, it is guided by two "guesses" which it assumes to have been provided by the user, in the stack's X register, and ...
If there is one sign variation, then one has an isolation interval. Otherwise, one splits the interval [0, 1] into [0, 1/2] and [1/2, 1], one maps them onto [0, 1] by the changes of variable x = y/2 and x = (y + 1)/2. Vincent's auxiliary theorem insures the termination of this procedure.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution, and X i, i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log(p) distribution, then
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.
Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely ′, scaled by the current value of f. When f is a function f(x) of a real variable x, and takes real, strictly positive values, this is equal to the derivative of ln(f), or the natural logarithm of f.
The zig-zagging entails starting from the point (n, 0) and iteratively moving to (n, log b (n) ), to (0, log b (n) ), to (log b (n), 0 ). In computer science, the iterated logarithm of , written log * (usually read "log star"), is the number of times the logarithm function must be iteratively applied before the result is less than or equal to . [1]
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).