enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations. It is a spheroid (an ellipsoid of revolution) whose minor axis (shorter diameter), which connects the ...

  3. Geoid - Wikipedia

    en.wikipedia.org/wiki/Geoid

    The geoid (/ ˈdʒiː.ɔɪd / JEE-oyd) is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents (such as might be approximated with very narrow ...

  4. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    Spheroid. A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry. If the ellipse is rotated about its major axis, the result is a prolate ...

  5. Physical geodesy - Wikipedia

    en.wikipedia.org/wiki/Physical_geodesy

    The separation between the geoid and the reference ellipsoid is called the undulation of the geoid, symbol . The geoid, or mathematical mean sea surface, is defined not only on the seas, but also under land; it is the equilibrium water surface that would result, would sea water be allowed to move freely (e.g., through tunnels) under the land.

  6. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  7. Vertical deflection - Wikipedia

    en.wikipedia.org/wiki/Vertical_deflection

    The vertical deflection are the angular components between the true zenith – nadir curve (plumb line) tangent line and the normal vector to the surface of the reference ellipsoid (chosen to approximate the Earth's sea-level surface). VDs are caused by mountains and by underground geological irregularities and can amount to angles of 10 ″ in ...

  8. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    For example, in the WGS 84 spheroid used by today's GPS systems, the reciprocal of the flattening / is set to be exactly 298.257 223 563. The difference between a sphere and a reference ellipsoid for Earth is small, only about one part in 300. Historically, flattening was computed from grade measurements.

  9. Geodetic Reference System 1980 - Wikipedia

    en.wikipedia.org/wiki/Geodetic_Reference_System_1980

    The geometrical separation between it and the reference ellipsoid is called the geoidal undulation, or more usually the geoid-ellipsoid separation, N. It varies globally between ±110 m. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f.