enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Ranknullity theorem. The ranknullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and. the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel (linear algebra) In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. [1] That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the ...

  4. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4] Rank is thus a measure of the "nondegenerateness ...

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the column space is called the rank of the matrix and is at most min (m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(AT) and C(A) respectively. [2]

  6. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    An immediate corollary, for finite-dimensional spaces, is the ranknullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T). The cokernel of a linear operator T : V → W is defined to be the quotient space W/im(T).

  7. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    Kernel (algebra) In algebra, the kernel of a homomorphism (function that preserves the structure) is generally the inverse image of 0 (except for groups whose operation is denoted multiplicatively, where the kernel is the inverse image of 1). An important special case is the kernel of a linear map. The kernel of a matrix, also called the null ...

  8. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    The dimension of the co-kernel and the dimension of the image (the rank) add up to the dimension of the target space. For finite dimensions, this means that the dimension of the quotient space W/f(V) is the dimension of the target space minus the dimension of the image. As a simple example, consider the map f: R 2 → R 2, given by f(x, y) = (0 ...

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The lambdas are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1][2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.