enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  3. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    A plane curve with non-vanishing curvature has zero torsion at all points. Conversely, if the torsion of a regular curve with non-vanishing curvature is identically zero, then this curve belongs to a fixed plane. The curvature and the torsion of a helix are constant. Conversely, any space curve whose curvature and torsion are both constant and ...

  4. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque.Torsion is expressed in either the pascal (Pa), an SI unit for newtons per square metre, or in pounds per square inch (psi) while torque is expressed in newton metres (N·m) or foot-pound force (ft·lbf).

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The Frenet–Serret formulas are frequently introduced in courses on multivariable calculus as a companion to the study of space curves such as the helix. A helix can be characterized by the height 2π h and radius r of a single turn. The curvature and torsion of a helix (with constant radius) are given by the formulas.

  6. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    Second polar moment of area. The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (deflection), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of ...

  7. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    To find the torsion coefficient of the wire, Cavendish measured the natural resonant oscillation period T of the torsion balance: = Assuming the mass of the torsion beam itself is negligible, the moment of inertia of the balance is just due to the small balls. Treating them as point masses, each at L/2 from the axis, gives:

  8. Torsion spring - Wikipedia

    en.wikipedia.org/wiki/Torsion_spring

    A helical torsion spring, is a metal rod or wire in the shape of a helix (coil) that is subjected to twisting about the axis of the coil by sideways forces (bending moments) applied to its ends, twisting the coil tighter. Clocks use a spiral wound torsion spring (a form of helical torsion spring where the coils are around each other instead of ...

  9. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    is the torsion constant for the section. Note that the torsional stiffness has dimensions [force] * [length] / [angle], so that its SI units are N*m/rad. For the special case of unconstrained uniaxial tension or compression, Young's modulus can be thought of as a measure of the stiffness of a structure.