Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
While it is possible for a discontinuous real function to have an anti-derivative, anti-derivatives can fail to exist even for holomorphic functions of a complex variable. For example, consider the reciprocal function, g(z) = 1/z which is holomorphic on the punctured plane C\{0}.
Other examples include the functions and . Liouville's theorem states that elementary antiderivatives, if they exist, are in the same differential field as the function, plus possibly a finite number of applications of the logarithm function.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
That is, the derivative of the area function A(x) exists and is equal to the original function f(x), so the area function is an antiderivative of the original function. Thus, the derivative of the integral of a function (the area) is the original function, so that derivative and integral are inverse operations which reverse each other. This is ...
Thus its second derivative (graphed in green) also has a root in the same interval. The requirements concerning the n th derivative of f can be weakened as in the generalization above, giving the corresponding (possibly weaker) assertions for the right- and left-hand limits defined above with f (n − 1) in place of f.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R n. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold