enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    Since dominant traits mask recessive traits (assuming no epistasis), there are nine combinations that have the phenotype round yellow, three that are round green, three that are wrinkled yellow, and one that is wrinkled green. The ratio 9:3:3:1 is the expected outcome when crossing two double-heterozygous parents with unlinked genes.

  3. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    Co-dominant expression of genes for plumage colours. In cases of co-dominance, the genetic traits of both different alleles of the same gene-locus are clearly expressed in the phenotype. For example, in certain varieties of chicken, the allele for black feathers is co-dominant with the allele for white feathers.

  4. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    The phenotypic ratio of a cross between two heterozygotes is 9:3:3:1, where 9/16 of the individuals possess the dominant phenotype for both traits, 3/16 of the individuals possess the dominant phenotype for one trait, 3/16 of the individuals possess the dominant phenotype for the other trait, and 1/16 are recessive for both traits. [1]

  5. Heredity - Wikipedia

    en.wikipedia.org/wiki/Heredity

    An allele is said to be dominant if it is always expressed in the appearance of an organism (phenotype) provided that at least one copy of it is present. For example, in peas the allele for green pods, G, is dominant to that for yellow pods, g. Thus pea plants with the pair of alleles either GG (homozygote) or Gg (heterozygote) will have green ...

  6. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    The first uses of test crosses were in Gregor Mendel’s experiments in plant hybridization.While studying the inheritance of dominant and recessive traits in pea plants, he explains that the “signification” (now termed zygosity) of an individual for a dominant trait is determined by the expression patterns of the following generation.

  7. Hereditary carrier - Wikipedia

    en.wikipedia.org/wiki/Hereditary_carrier

    A hereditary carrier (genetic carrier or just carrier), is a person or other organism that has inherited a recessive allele for a genetic trait or mutation but usually does not display that trait or show symptoms of the disease. Carriers are, however, able to pass the allele onto their offspring, who may then express the genetic trait.

  8. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    Alternatively, a heterozygote for gene "R" is assumed to be "Rr". The uppercase letter is usually written first. [citation needed] If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele, and the trait coded by the recessive allele will not be present.

  9. Compound heterozygosity - Wikipedia

    en.wikipedia.org/wiki/Compound_heterozygosity

    In medical genetics, compound heterozygosity is the condition of having two or more heterogeneous recessive alleles at a particular locus that can cause genetic disease in a heterozygous state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other (for example, both alleles might be ...