enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optimal stopping - Wikipedia

    en.wikipedia.org/wiki/Optimal_stopping

    Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem .

  3. Secretary problem - Wikipedia

    en.wikipedia.org/wiki/Secretary_problem

    Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.

  4. Robbins' problem - Wikipedia

    en.wikipedia.org/wiki/Robbins'_problem

    What stopping rule minimizes the expected rank of the selected observation, and what is its corresponding value? The general solution to this full-information expected rank problem is unknown. The major difficulty is that the problem is fully history-dependent, that is, the optimal rule depends at every stage on all preceding values, and not ...

  5. Bellman equation - Wikipedia

    en.wikipedia.org/wiki/Bellman_equation

    A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. [1] It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision ...

  6. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method.

  7. Filtering problem (stochastic processes) - Wikipedia

    en.wikipedia.org/wiki/Filtering_problem...

    Consider a probability space (Ω, Σ, P) and suppose that the (random) state Y t in n-dimensional Euclidean space R n of a system of interest at time t is a random variable Y t : Ω → R n given by the solution to an Itō stochastic differential equation of the form

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    An equation (or set of equations) stating that the first derivative(s) equal(s) zero at an interior optimum is called a 'first-order condition' or a set of first-order conditions. Optima of equality-constrained problems can be found by the Lagrange multiplier method.

  9. Hamilton–Jacobi–Bellman equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi–Bellman...

    The equation is a result of the theory of dynamic programming which was pioneered in the 1950s by Richard Bellman and coworkers. [4] [5] [6] The connection to the Hamilton–Jacobi equation from classical physics was first drawn by Rudolf Kálmán. [7] In discrete-time problems, the analogous difference equation is usually referred to as the ...