enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    Because the angle of the equilibrant force is opposite of the resultant force, if 180 degrees are added or subtracted to the resultant force's angle, the equilibrant force's angle will be known. Multiplying the resultant force vector by a -1 will give the correct equilibrant force vector: <-10, -8>N x (-1) = <10, 8>N = C.

  3. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).

  4. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga, so long as the sculpture or stack of blocks is not in the state of collapsing.

  5. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  6. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...

  7. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    Diagram of the moment arm of a force F. The magnitude of the moment of a force at a point O, is equal to the perpendicular distance from O to the line of action of F, multiplied by the magnitude of the force: M = F · d, where F = the force applied d = the perpendicular distance from the axis to the line of action of the force. This ...

  8. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    Moreover, any object traveling at a constant velocity must be subject to zero net force (resultant force). This is the definition of dynamic equilibrium: when all the forces on an object balance but it still moves at a constant velocity. A simple case of dynamic equilibrium occurs in constant velocity motion across a surface with kinetic ...

  9. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that in the equivalent static system one can take moments about any point (not just the center of mass).