Search results
Results from the WOW.Com Content Network
[1] [2] [3] [better source needed]. For example, 3 x 2 − 2 x y + c {\displaystyle 3x^{2}-2xy+c} is an algebraic expression. Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression:
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator, by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation).
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
Let a and b be positive integers such that 1< a / b < 3/2 (as 1<2< 9/4 satisfies these bounds). Now 2b 2 and a 2 cannot be equal, since the first has an odd number of factors 2 whereas the second has an even number of factors 2. Thus | 2b 2 − a 2 | ≥ 1.
Trigonometric identities may help simplify the answer. [ 1 ] [ 2 ] Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
Archimedes' figure with a = 3 / 4 In mathematics , the infinite series 1 / 4 + 1 / 16 + 1 / 64 + 1 / 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics ; it was used by Archimedes circa 250–200 BC. [ 1 ]