enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    The wider applicability and increased robustness of non-parametric tests comes at a cost: in cases where a parametric test's assumptions are met, non-parametric tests have less statistical power. In other words, a larger sample size can be required to draw conclusions with the same degree of confidence.

  3. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]

  4. Category:Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Category:Nonparametric...

    Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics. Nonparametric models differ from parametric models in that the model structure is ...

  5. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    Without the assumption that belongs to a specific parametric family of functions it is impossible to get an unbiased estimate for , however most estimators are consistent under suitable conditions. List of general-purpose nonparametric regression algorithms

  6. CDF-based nonparametric confidence interval - Wikipedia

    en.wikipedia.org/wiki/CDF-based_nonparametric...

    In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...

  7. Siegel–Tukey test - Wikipedia

    en.wikipedia.org/wiki/Siegel–Tukey_test

    Siegel–Tukey test, named after Sidney Siegel and John Tukey, is a non-parametric test which may be applied to data measured at least on an ordinal scale. It tests for differences in scale between two groups. The test is used to determine if one of two groups of data tends to have more widely dispersed values than the other.

  8. Wald–Wolfowitz runs test - Wikipedia

    en.wikipedia.org/wiki/Wald–Wolfowitz_runs_test

    The Wald–Wolfowitz runs test (or simply runs test), named after statisticians Abraham Wald and Jacob Wolfowitz is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually independent.

  9. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y .