enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10] Consider a Fibonacci Box containing two, odd, coprime integers x and y in the right-hand column.

  3. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...

  4. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    We also note that the same shifted generating function technique applied to the second-order recurrence for the Fibonacci numbers is the prototypical example of using generating functions to solve recurrence relations in one variable already covered, or at least hinted at, in the subsection on rational functions given above.

  5. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    Calculate an interior point and its functional value F 2. The two interval lengths are in the ratio c : r or r : c where r = φ − 1; and c = 1 − r, with φ being the golden ratio. Using the triplet, determine if convergence criteria are fulfilled. If they are, estimate the X at the minimum from that triplet and return.

  6. Linear-feedback shift register - Wikipedia

    en.wikipedia.org/wiki/Linear-feedback_shift_register

    Binary LFSRs of both Fibonacci and Galois configurations can be expressed as linear functions using matrices in (see GF(2)). [9] Using the companion matrix of the characteristic polynomial of the LFSR and denoting the seed as a column vector ( a 0 , a 1 , … , a n − 1 ) T {\displaystyle (a_{0},a_{1},\dots ,a_{n-1})^{\mathrm {T} }} , the ...

  7. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. [3] The first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... .

  8. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...

  9. Fibonacci coding - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_coding

    To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).