Search results
Results from the WOW.Com Content Network
The theoretically optimal page replacement algorithm (also known as OPT, clairvoyant replacement algorithm, or Bélády's optimal page replacement policy) [3] [4] [2] is an algorithm that works as follows: when a page needs to be swapped in, the operating system swaps out the page whose next use will occur farthest in the future. For example, a ...
Virtual memory compression (also referred to as RAM compression and memory compression) is a memory management technique that utilizes data compression to reduce the size or number of paging requests to and from the auxiliary storage. [1] In a virtual memory compression system, pages to be paged out of virtual memory are compressed and stored ...
Windows 95, Windows 98 and Windows Me use a similar file, and the settings for it are located under Control Panel → System → Performance tab → Virtual Memory. Windows automatically sets the size of the page file to start at 1.5× the size of physical memory, and expand up to 3× physical memory if necessary.
For example, if a 2 32 virtual address space is mapped to 4 KiB (2 12 bytes) pages, the number of virtual pages is 2 20 = (2 32 / 2 12). However, if the page size is increased to 32 KiB (2 15 bytes), only 2 17 pages are required. A multi-level paging algorithm can decrease the memory cost of allocating a large page table for each process by ...
Virtual memory combines active RAM and inactive memory on DASD [a] to form a large range of contiguous addresses.. In computing, virtual memory, or virtual storage, [b] is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" [3] which "creates the illusion to users of a very large (main) memory".
Enabling PAE (by setting bit 5, PAE, of the system register CR4) causes major changes to this scheme. By default, the size of each page remains as 4 KB. Each entry in the page table and page directory becomes 64 bits long (8 bytes), instead of 32 bits, to allow for additional address bits.
A similar mechanism is used for memory-mapped files, which are mapped to virtual memory and loaded to physical memory on demand. When physical memory is not full this is a simple operation; the page is written back into physical memory, the page table and TLB are updated, and the instruction is restarted.
Windows XP supports a larger system virtual address space—1.3 GB—of which the contiguous virtual address space that can be used by device drivers is 960 MB. The Windows XP Memory Manager is redesigned to consume less paged pool, allowing for more caching and greater availability of paged pool for any component that needs it.