Search results
Results from the WOW.Com Content Network
Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. Here units refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to n.
n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
The unit group of the ring M n (R) of n × n matrices over a ring R is the group GL n (R) of invertible matrices. For a commutative ring R, an element A of M n (R) is invertible if and only if the determinant of A is invertible in R. In that case, A −1 can be given explicitly in terms of the adjugate matrix.
The roots of unity modulo n are exactly the integers that are coprime with n. In fact, these integers are roots of unity modulo n by Euler's theorem, and the other integers cannot be roots of unity modulo n, because they are zero divisors modulo n. A primitive root modulo n, is a generator of the group of units of the ring of integers modulo n.
gcd(r, n) = 1 for each r in R, R contains φ(n) elements, no two elements of R are congruent modulo n. [1] [2] Here φ denotes Euler's totient function. A reduced residue system modulo n can be formed from a complete residue system modulo n by removing all integers not relatively prime to n. For example, a complete residue system modulo 12 is ...
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.
The group of units mod is isomorphic to the direct product of the groups mod the : [16] (/) (/) (/) (/). ... The Gauss sum of a Dirichlet character modulo N is ...