Search results
Results from the WOW.Com Content Network
In the RGB model, hues are represented by specifying one color as full intensity (255), a second color with a variable intensity, and the third color with no intensity (0). The following provides some examples using red as the full-intensity and green as the partial-intensity colors; blue is always zero:
Here is an example of color channel splitting of a full RGB color image. The column at left shows the isolated color channels in natural colors, while at right there are their grayscale equivalences: Composition of RGB from three grayscale images. The reverse is also possible: to build a full-color image from their separate grayscale channels.
The test chart shows the full 256 levels of the red, green, and blue (RGB) primary colors and cyan, magenta, and yellow complementary colors, along with a full 256-level grayscale. Gradients of RGB intermediate colors (orange, lime green, sea green, sky blue, violet, and fuchsia), and a full hue spectrum are also present.
This is a list of software palettes used by computers. Systems that use a 4-bit or 8-bit pixel depth can display up to 16 or 256 colors simultaneously. Many personal computers in the early 1990s displayed at most 256 different colors, freely selected by software (either by the user or by a program) from their wider hardware's RGB color palette.
RGB (red, green, blue) describes the chromaticity component of a given color, when excluding luminance. RGB itself is not a color space, it is a color model. There are many different color spaces that employ this color model to describe their chromaticities because the R/G/B chromaticities are one facet for reproducing color in CRT & LED displays.
Adding a specific mapping function between a color model and a reference color space establishes within the reference color space a definite "footprint", known as a gamut, and for a given color model, this defines a color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB color model.
RGB is a device-dependent color model: different devices detect or reproduce a given RGB value differently, since the color elements (such as phosphors or dyes) and their response to the individual red, green, and blue levels vary from manufacturer to manufacturer, or even in the same device over time.
The difference between these two modes can only be seen on a composite monitor, where mode 0 disables the color burst, making all text appear in grayscale. Mode 1 enables the color burst, allowing for color. Mode 0 and Mode 1 are functionally identical on RGB monitors and on later adapters that emulate CGA without supporting composite color output.