enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is not visible to human eyes.

  3. Thermal emittance - Wikipedia

    en.wikipedia.org/wiki/Thermal_emittance

    Thermal emittance or thermal emissivity is the ratio of the radiant emittance of heat of a specific object or surface to that of a standard black body.Emissivity and emittivity are both dimensionless quantities given in the range of 0 to 1, representing the comparative/relative emittance with respect to a blackbody operating in similar conditions, but emissivity refers to a material property ...

  4. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Next, suppose we have a material that violates Kirchhoff's law when integrated, such that the total coefficient of absorption is not equal to the coefficient of emission at a certain , then if the material at temperature is placed into a Hohlraum at temperature , it would spontaneously emit more than it absorbs, or conversely, thus ...

  5. Low emissivity - Wikipedia

    en.wikipedia.org/wiki/Low_emissivity

    As it is an opaque material, the remaining 10 percent must be reflected. Conversely, a low-e material such as aluminum foil has a thermal emissivity/absorptance value of 0.03 and as an opaque material, the thermal reflectance value must be 1.0 - 0.03 =0.97, meaning it reflects 97 percent of radiant thermal energy. Low-emissivity building ...

  6. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    (In contrast with Balfour Stewart's, Kirchhoff's definition of his absorption ratio did not refer in particular to a lamp-black surface as the source of the incident radiation.) Thus the ratio ⁠ E(T, i) / a(T, i) ⁠ of emitting power to absorption ratio is a dimensioned quantity, with the dimensions of emitting power, because a(T, i) is ...

  7. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    These expressions are independent of Einstein coefficients. Absorption and emission often reach equilibrium inside dense, non-transparent materials, so such materials often emit thermal infrared of nearly blackbody intensity. Some of that radiation is internally reflected or scattered at a surface, producing emissivity less than 1.

  8. Einstein coefficients - Wikipedia

    en.wikipedia.org/wiki/Einstein_coefficients

    In physics, one thinks of a spectral line from two viewpoints. An emission line is formed when an atom or molecule makes a transition from a particular discrete energy level E 2 of an atom, to a lower energy level E 1, emitting a photon of a particular energy and wavelength. A spectrum of many such photons will show an emission spike at the ...

  9. Light-emitting diode physics - Wikipedia

    en.wikipedia.org/wiki/Light-emitting_diode_physics

    Advances in materials science have enabled making devices with ever-shorter wavelengths, emitting light in a variety of colors. LEDs are usually built on an n-type substrate, with an electrode attached to the p-type layer deposited on its surface. P-type substrates, while less common, occur as well.