enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    The ratio varies from 0 to 1. The surface of a perfect black body (with an emissivity of 1) emits thermal radiation at the rate of approximately 448 watts per square metre (W/m 2) at a room temperature of 25 °C (298 K; 77 °F). Objects have emissivities less than 1.0, and emit radiation at correspondingly lower rates. [1]

  3. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Next, suppose we have a material that violates Kirchhoff's law when integrated, such that the total coefficient of absorption is not equal to the coefficient of emission at a certain , then if the material at temperature is placed into a Hohlraum at temperature , it would spontaneously emit more than it absorbs, or conversely, thus ...

  4. Thermal emittance - Wikipedia

    en.wikipedia.org/wiki/Thermal_emittance

    Thermal emittance or thermal emissivity is the ratio of the radiant emittance of heat of a specific object or surface to that of a standard black body.Emissivity and emittivity are both dimensionless quantities given in the range of 0 to 1, representing the comparative/relative emittance with respect to a blackbody operating in similar conditions, but emissivity refers to a material property ...

  5. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Absorptivity, reflectivity, and emissivity of all bodies are dependent on the wavelength of the radiation. Due to reciprocity, absorptivity and emissivity for any particular wavelength are equal at equilibrium – a good absorber is necessarily a good emitter, and a poor absorber is a poor emitter. The temperature determines the wavelength ...

  6. Low emissivity - Wikipedia

    en.wikipedia.org/wiki/Low_emissivity

    As it is an opaque material, the remaining 10 percent must be reflected. Conversely, a low-e material such as aluminum foil has a thermal emissivity/absorptance value of 0.03 and as an opaque material, the thermal reflectance value must be 1.0 - 0.03 =0.97, meaning it reflects 97 percent of radiant thermal energy. Low-emissivity building ...

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    In common usage, the symbol used for radiant exitance (often called radiant emittance) varies among different texts and in different fields. The Stefan–Boltzmann law may be expressed as a formula for radiance as a function of temperature. Radiance is measured in watts per square metre per steradian (W⋅m −2 ⋅sr −1).

  8. Black body - Wikipedia

    en.wikipedia.org/wiki/Black_body

    By definition, a black body in thermal equilibrium has an emissivity ε = 1. A source with a lower emissivity, independent of frequency, is often referred to as a gray body. [3] [4] Constructing black bodies with an emissivity as close to 1 as possible remains a topic of current interest. [5]

  9. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    These expressions are independent of Einstein coefficients. Absorption and emission often reach equilibrium inside dense, non-transparent materials, so such materials often emit thermal infrared of nearly blackbody intensity. Some of that radiation is internally reflected or scattered at a surface, producing emissivity less than 1.