Search results
Results from the WOW.Com Content Network
This allows researchers to quantify anatomical features of the brain in terms of shape, mass, volume (e.g. of the hippocampus, or of the primary versus secondary visual cortex), and to derive more specific information, such as the encephalization quotient, grey matter density and white matter connectivity, gyrification, cortical thickness, or ...
CA3a is the part of the cell band that is most distant from the dentate (and closest to CA1). CA3b is the middle part of the band nearest to the fimbria and fornix connection. CA3c is nearest to the dentate, inserting into the hilus. CA3 overall, has been considered to be the “pacemaker” of the hippocampus.
The hippocampus is located in the medial temporal lobe (subcortical), and is an infolding of the medial temporal cortex. [1] The hippocampus plays an important role in the transfer of information from short-term memory to long-term memory during encoding and retrieval stages. These stages do not need to occur successively, but are, as studies ...
The hippocampal formation is a compound structure in the medial temporal lobe of the brain.It forms a c-shaped bulge on the floor of the temporal horn of the lateral ventricle. [1]
It is thought by some that grey and white matter specifically relate to different IQs (grey matter with Verbal IQ and white matter with Performance IQ), but the results have not been consistent. It has been found that within the cortex, the correlation with IQ was very influenced by the volume of prefrontal grey matter.
Hippocampus anatomy describes the physical aspects and properties of the hippocampus, a neural structure in the medial temporal lobe of the brain. It has a distinctive, curved shape that has been likened to the sea-horse monster of Greek mythology and the ram's horns of Amun in Egyptian mythology .
These small regions of high intensity are observed on T2 weighted MRI images (typically created using 3D FLAIR) within cerebral white matter (white matter lesions, white matter hyperintensities or WMH) [1] [2] or subcortical gray matter (gray matter hyperintensities or GMH). The volume and frequency is strongly associated with increasing age. [2]
White matter is the tissue through which messages pass between different areas of grey matter within the central nervous system. The white matter is white because of the fatty substance (myelin) that surrounds the nerve fibers (axons). This myelin is found in almost all long nerve fibers, and acts as an electrical insulation.