Ad
related to: multistep process of biofilm formation
Search results
Results from the WOW.Com Content Network
Research suggests that biofilm formation by S. marcescens is a process controlled by both nutrient cues and the quorum-sensing system. [127] Quorum sensing influences the bacterium's ability to adhere to surfaces and establish mature biofilms, whereas the availability of specific nutrients can enhance or inhibit biofilm development.
By harnessing a natural phenomenon, biofilm-mediated remediation is an environmentally friendly method for environmental cleanup. [3] Currently, activated sludge is a common wastewater treatment process. However, biofilm-based wastewater treatment systems often use less space, are more consistent, and produce less sludge. [4]
The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment.
Surface roughness can also affect biofilm adhesion. Rough, high-energy surfaces are more conducive to biofilm formation and maturation, while smooth surfaces are less susceptible to biofilm adhesion. The roughness of a surface can affect the hydrophobicity or hydrophilicity of the contacting substance, which in turn affects its ability to adhere.
Quorum sensing (QS) is used by bacteria to form biofilms. Quorum sensing is used by bacteria to form biofilms because the process determines if the minimum number of bacteria necessary for biofilm formation are present. The criteria to form a biofilm is dependent on a certain density of bacteria rather than a certain number of bacteria being ...
EPS is found in the matrix of other microbial biofilms such as microalgal biofilms. The formation of biofilm and structure of EPS share a lot of similarities with bacterial ones. The formation of biofilm starts with reversible absorption of floating cells to the surface. Followed by production of EPS, the adsorption will get irreversible.
In 1996 the national profile of the CBE and biofilm research was on the rise. Numerous scientific and mass media publications began to address biofilm technology in earnest. An article in the September 1996 issue of Science, entitled "Biofilms Invade Microbiology" featured the work and history of the Center for Biofilm Engineering. [4]
In P. aeruginosa infections, quorum sensing is critical for biofilm formation and pathogenicity. [22] P. aeruginosa contains two pairs of LuxI/LuxR homologs, LasI/LasR and RhlI, RhlR. [23] [24] LasI and RhlI are synthase enzymes that catalyze the synthesis of N-(3-oxododecanoyl)-homoserine lactone and N-(butyryl)-homoserine lactone, respectively.
Ad
related to: multistep process of biofilm formation