Search results
Results from the WOW.Com Content Network
An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide. An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle , [ 1 ] but sometimes the femoral artery in the groin or another site is used.
Key to understanding whether the lung is involved in a particular case of hypoxemia is the difference between the alveolar and the arterial oxygen levels; this A-a difference is often called the A-a gradient and is normally small. The arterial oxygen partial pressure is obtained directly from an arterial blood gas determination. The oxygen ...
Arterial blood oxygen tension (normal) P a O 2 – Partial pressure of oxygen at sea level (160 mmHg in the atmosphere, 21% of standard atmospheric pressure of 760 mmHg) in arterial blood is between 75 mmHg and 100 mmHg. [4] [5] [6] Venous blood oxygen tension (normal) P v O 2 – Oxygen tension in venous blood at sea level is between 30 mmHg ...
Perinatal asphyxia (also known as neonatal asphyxia or birth asphyxia) is the medical condition resulting from deprivation of oxygen to a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. It remains a serious condition which causes significant mortality and morbidity.
Normal arterial blood oxygen saturation levels in humans are 96–100 percent. [1] If the level is below 90 percent, it is considered low and called hypoxemia . [ 2 ] Arterial blood oxygen levels below 80 percent may compromise organ function, such as the brain and heart, and should be promptly addressed.
An exception is for acid–base and blood gases, which are generally given for arterial blood. [citation needed] Still, the blood values are approximately equal between the arterial and venous sides for most substances, with the exception of acid–base, blood gases and drugs (used in therapeutic drug monitoring (TDM) assays). [6]
Monitoring the level of carbon dioxide in neonatal infants to ensure that the level is not too high (hypercarbia) or too low is important for improving outcomes for neonates in intensive care. [4] Carbon dioxide can be monitored by taking a blood sample ( arterial blood gas ), through the breath ( exhalation ), and it can be measured ...
Applying this analogy to different causes of hypoxemia should help reason out whether to expect an elevated or normal A-a gradient. As a general rule of thumb, any pathology of the alveolar-capillary unit will result in a high A-a gradient. The table below has the different disease states that cause hypoxemia. [2]