Search results
Results from the WOW.Com Content Network
The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if is a right angle then =, and the law of cosines reduces to = +. The law of cosines is useful for solving a triangle when all three sides or two sides and their included angle are given.
Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust numerically to determine it from its sine than its cosine because the arc-cosine function has a divergent derivative at 1 ...
If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:
The spherical cosine formulae were originally proved by elementary geometry and the planar cosine rule (Todhunter, [1] Art.37). He also gives a derivation using simple coordinate geometry and the planar cosine rule (Art.60). The approach outlined here uses simpler vector methods. (These methods are also discussed at Spherical law of cosines.)
The law of cosines (also known as the cosine formula or cosine rule) is an extension of the Pythagorean theorem: = + , or equivalently, = +. In this formula the angle at C is opposite to the side c.
Triangles with an angle of 60° are a special case of the Law of Cosines: [1] [2] [3] = +. When the lengths of the sides are integers, the values form a set known as an Eisenstein triple. [4] Examples of Eisenstein triples include: [5]
The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [32] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33]
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.