enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if is a right angle then ⁡ =, and the law of cosines reduces to = +. The law of cosines is useful for solving a triangle when all three sides or two sides and their included angle are given.

  3. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust numerically to determine it from its sine than its cosine because the arc-cosine function has a divergent derivative at 1 ...

  4. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The spherical cosine formulae were originally proved by elementary geometry and the planar cosine rule (Todhunter, [1] Art.37). He also gives a derivation using simple coordinate geometry and the planar cosine rule (Art.60). The approach outlined here uses simpler vector methods. (These methods are also discussed at Spherical law of cosines.)

  6. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The law of cosines (also known as the cosine formula or cosine rule) is an extension of the Pythagorean theorem: = + ⁡, or equivalently, ⁡ = +. In this formula the angle at C is opposite to the side c.

  7. Eisenstein triple - Wikipedia

    en.wikipedia.org/wiki/Eisenstein_triple

    Triangles with an angle of 60° are a special case of the Law of Cosines: [1] [2] [3] = +. When the lengths of the sides are integers, the values form a set known as an Eisenstein triple. [4] Examples of Eisenstein triples include: [5]

  8. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [32] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33]

  9. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.