Search results
Results from the WOW.Com Content Network
In thermodynamics, the specific heat capacity (symbol c) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat.
The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property. The corresponding intensive property is the specific heat capacity, found by dividing the heat capacity of an object by its mass. Dividing the heat capacity by the amount of substance in moles yields its molar heat capacity.
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under ...
An additional factor for all types of specific heat capacities (including molar specific heats) then further reflects degrees of freedom available to the atoms composing the substance, at various temperatures. For most liquids, the volumetric heat capacity is narrower, for example octane at 1.64 MJ⋅K −1 ⋅m −3 or ethanol at 1.9. This ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat , and the energy that flows across a boundary as a result ...
For example, if 250 J of heat energy is added to a copper gear with a thermal mass of 38.46 J/°C, its temperature will rise by 6.50 °C. If the body consists of a homogeneous material with sufficiently known physical properties, the thermal mass is simply the mass of material present times the specific heat capacity of that material.