Search results
Results from the WOW.Com Content Network
If using the metric unit meters for distance and the imperial unit inches for target size, one has to multiply by a factor of 25.4, since one inch is defined as 25.4 millimeters. distance in meters = target in inches angle in mrad × 25.4 {\displaystyle {\text{distance in meters}}={\frac {\text{target in inches}}{\text{angle in mrad}}}\times 25.4}
The first American-made pocket-sized calculator, the Bowmar 901B (popularly termed The Bowmar Brain), measuring 5.2 by 3.0 by 1.5 inches (132 mm × 76 mm × 38 mm), came out in the Autumn of 1971, with four functions and an eight-digit red LED display, for US$240, while in August 1972 the four-function Sinclair Executive became the first ...
Rack units are typically denoted without a space between the number of units and the 'U'. Thus, a 4U server enclosure (case) is seven inches (177.8 mm) high, or more practically, built to occupy a vertical space seven inches high, with sufficient clearance to allow movement of adjacent hardware.
The vertical exaggeration is given by: = where VS is the vertical scale and HS is the horizontal scale, both given as representative fractions.. For example, if 1 centimetre (0.39 in) vertically represents 200 metres (660 ft) and 1 centimetre (0.39 in) horizontally represents 4,000 metres (13,000 ft), the vertical exaggeration, 20×, is given by:
It is especially popular as a unit of measurement with shooters familiar with the imperial measurement system because 1 MOA subtends a circle with a diameter of 1.047 inches (which is often rounded to just 1 inch) at 100 yards (2.66 cm at 91 m or 2.908 cm at 100 m), a traditional distance on American target ranges.
Smaller units of length Unit Greek name Equal to Modern equivalent Description daktylos δάκτυλος: 19.3 mm (0.76 in) finger kondylos κόνδυλος
Density (volumetric mass density or specific mass) is a substance's mass per unit of volume.The symbol most often used for density is ρ (the lower case Greek letter rho), although the Latin letter D can also be used.
(5:4 works out to root(25+16), or 6.403 for the diagonal - divide by that then multiply by 5 or 4. 4:3 is the simple one, as the diagonal is 5 (hopefully familiar from school?). 16:10 gives 18.868, and 16:9, via root(256+81), produces 18.358 - or in other words, in the 16:10 case, a 19" diagonal screen with a resolution of 1440x900, like what I ...