Search results
Results from the WOW.Com Content Network
The formula for an integration by parts is () ′ = [() ()] ′ (). Beside the boundary conditions , we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( g ′ {\displaystyle g'} becomes g {\displaystyle g} ) and one which is differentiated ( f {\displaystyle f} becomes f ...
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
The inverse chain rule method (a special case of integration by substitution) Integration by parts (to integrate products of functions) Inverse function integration (a formula that expresses the antiderivative of the inverse f −1 of an invertible and continuous function f, in terms of f −1 and the antiderivative of f).
The sum of the reciprocals of the numbers in any sum-free sequence is less than 2.8570 . The sum of the reciprocals of the heptagonal numbers converges to a known value that is not only irrational but also transcendental, and for which there exists a complicated formula.
Abel's summation formula – Integration by parts version of Abel's method for summation by parts; Nachbin resummation – Theorem bounding the growth rate of analytic functions; Summation by parts – Theorem to simplify sums of products of sequences
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
A negative-order reversal of this sequence powers formula corresponding to the operation of repeated integration is defined by the zeta series transformation and its generalizations defined as a derivative-based transformation of generating functions, or alternately termwise by and performing an integral transformation on the sequence ...
Let {g n} be a uniformly bounded sequence of real-valued continuous functions on a set E such that g n+1 (x) ≤ g n (x) for all x ∈ E and positive integers n, and let {f n} be a sequence of real-valued functions such that the series Σf n (x) converges uniformly on E.