enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    In the above conceptual examples it would appear that a large number of extra digits would need to be provided by the adder to ensure correct rounding; however, for binary addition or subtraction using careful implementation techniques only a guard bit, a rounding bit and one extra sticky bit need to be carried beyond the precision of the operands.

  4. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, a significand of 8 000 000 is encoded as binary 0111 1010000100 1000000000, with the leading 4 bits encoding 7; the first significand which requires a 24th bit (and thus the second encoding form) is 2 23 = 8 388 608. In the above cases, the value represented is: (−1) sign × 10 exponent−101 × significand

  5. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    One method, more obscure than most, is to alternate direction when rounding a number with 0.5 fractional part. All others are rounded to the closest integer. Whenever the fractional part is 0.5, alternate rounding up or down: for the first occurrence of a 0.5 fractional part, round up, for the second occurrence, round down, and so on.

  6. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  7. Guard digit - Wikipedia

    en.wikipedia.org/wiki/Guard_digit

    Shifting the second operand into position, as , gives it a fourth digit after the binary point. This creates the need to add an extra digit to the first operand—a guard digit—putting the subtraction into the form 2 1 × 0.1000 2 − 2 1 × 0.0111 2 {\displaystyle 2^{1}\times 0.1000_{2}-2^{1}\times 0.0111_{2}} .

  8. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  9. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    The exact result is 10005.85987, which rounds to 10005.9. With a plain summation, each incoming value would be aligned with sum, and many low-order digits would be lost (by truncation or rounding). The first result, after rounding, would be 10003.1. The second result would be 10005.81828 before rounding and 10005.8 after rounding. This is not ...