enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_theorem

    The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...

  3. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  4. Endogeneity (econometrics) - Wikipedia

    en.wikipedia.org/wiki/Endogeneity_(econometrics)

    [a] [2] Ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. [3]

  5. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    A simple, very important example of a generalized linear model (also an example of a general linear model) is linear regression. In linear regression, the use of the least-squares estimator is justified by the Gauss–Markov theorem, which does not assume that the distribution is normal.

  6. Fixed effects model - Wikipedia

    en.wikipedia.org/wiki/Fixed_effects_model

    Gauss–Markov theorem; ... There are two common assumptions made about the individual specific effect: the random effects assumption and the fixed effects assumption ...

  7. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.

  8. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    For example, it is easy to show that the arithmetic mean of a set of measurements of a quantity is the least-squares estimator of the value of that quantity. If the conditions of the Gauss–Markov theorem apply, the arithmetic mean is optimal, whatever the distribution of errors of the measurements might be.

  9. Gauss–Markov - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov

    The phrase Gauss–Markov is used in two different ways: Gauss–Markov processes in probability theory The Gauss–Markov theorem in mathematical statistics (in this theorem, one does not assume the probability distributions are Gaussian.)