Search results
Results from the WOW.Com Content Network
In plant cells the terms isotonic, hypotonic and hypertonic cannot strictly be used accurately because the pressure exerted by the cell wall significantly affects the osmotic equilibrium point. [5] Some organisms have evolved intricate methods of circumventing hypertonicity. For example, saltwater is hypertonic to the fish that live in
In hypertonic solutions water flows out of the cell and the cell shrinks (plasmolysis). In hypotonic solutions, water flows into the cell and the cell swells ( turgescence ). Osmotic shock or osmotic stress is physiologic dysfunction caused by a sudden change in the solute concentration around a cell , which causes a rapid change in the ...
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Osmosis in a U-shaped tube. Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. [1] It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis.
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
There are three types of Osmosis solutions: the isotonic solution, hypotonic solution, and hypertonic solution. Isotonic solution is when the extracellular solute concentration is balanced with the concentration inside the cell. In the Isotonic solution, the water molecules still move between the solutions, but the rates are the same from both ...
It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity and the cell bursts. The presence of a cell wall prevents the membrane from bursting, so cytolysis only occurs in animal and protozoa cells which do not have cell walls.
Plasmolysis is the process in which cells lose water in a hypertonic solution. The reverse process, deplasmolysis or cytolysis, can occur if the cell is in a hypotonic solution resulting in a lower external osmotic pressure and a net flow of water into the cell.