Search results
Results from the WOW.Com Content Network
In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass transfer rate, mass transfer area, and concentration change as driving force: [1] = ˙ Where: is the mass transfer coefficient [mol/(s·m 2)/(mol/m 3)], or m/s
For example, water has a molar mass of 18.0153(3) g/mol, but individual water molecules have molecular masses which range between 18.010 564 6863(15) Da (1 H 2 16 O) and 22.027 7364(9) Da (2 H 2 18 O). Atomic and molecular masses are usually reported in daltons, which is defined in terms of the mass of the isotope 12 C (carbon-12).
That is, the molar mass of a chemical compound expressed in g/mol or kg/kmol is numerically equal to its average molecular mass expressed in Da. For example, the average mass of one molecule of water is about 18.0153 Da, and the mass of one mole of water is about 18.0153 g.
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [2] or the conventional atomic weight.
The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate ( convection + diffusion) to the rate of diffusive mass transport, [ 1 ] and is named in honor of Thomas Kilgore Sherwood .
The diffusion in the bulk fluide compensate the utilisation of B at the surface of the catalyst. k g is the mass transfer coefficient. Ṅ diff,B =k g (y B,1-y B,2) Although the mixture is stationary due to the molar flow rate and velocity being zero, the net mass flow rate of the mixture is not equal to zero unless the molar mass of A is equal ...
a (L 2 bar/mol 2) b (L/mol) Acetic acid: 17.7098 0.1065 Acetic anhydride: 20.158 0.1263 Acetone: 16.02 0.1124 Acetonitrile: 17.81 0.1168 Acetylene: 4.516 0.0522 Ammonia: 4.225 0.0371 Aniline [2] 29.14 0.1486 Argon: 1.355 0.03201 Benzene: 18.24 0.1193 Bromobenzene: 28.94 0.1539 Butane: 14.66 0.1226 1-Butanol [2] 20.94 0.1326 2-Butanone [2] 19.97 ...
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.