enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Query-Key normalization (QKNorm) [32] normalizes query and key vectors to have unit L2 norm. In nGPT, many vectors are normalized to have unit L2 norm: [33] hidden state vectors, input and output embedding vectors, weight matrix columns, and query and key vectors.

  3. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Regularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution.. RLS is used for two main reasons.

  4. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    The norm (see also Norms) can be used to approximate the optimal norm via convex relaxation. It can be shown that the L 1 {\displaystyle L_{1}} norm induces sparsity. In the case of least squares, this problem is known as LASSO in statistics and basis pursuit in signal processing.

  6. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    By Dvoretzky's theorem, every finite-dimensional normed vector space has a high-dimensional subspace on which the norm is approximately Euclidean; the Euclidean norm is the only norm with this property. [24] It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25]

  7. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  8. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Here x ≥ 0 means that each component of the vector x should be non-negative, and ‖·‖ 2 denotes the Euclidean norm. Non-negative least squares problems turn up as subproblems in matrix decomposition, e.g. in algorithms for PARAFAC [2] and non-negative matrix/tensor factorization. [3] [4] The latter can be considered a generalization of ...

  9. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The hinge loss is a convex function, so many of the usual convex optimizers used in machine learning can work with it.It is not differentiable, but has a subgradient with respect to model parameters w of a linear SVM with score function = that is given by