Search results
Results from the WOW.Com Content Network
where is the heat capacity ratio / of the gas and where is the total (stagnation) upstream pressure. For air with a heat capacity ratio =, then =; other gases have in the range 1.09 (e.g. butane) to 1.67 (monatomic gases), so the critical pressure ratio varies in the range < / <, which means that, depending on the gas, choked flow usually ...
Figure 2: The pressure variation in the nozzle. It is interesting that the exit pressure p e is able to be greater than the receiver pressure p r. Nature allows this by providing the streamlines of a gas the ability to make a sudden change of direction at the exit and expand to a much greater area resulting in a reduction of the pressure from p ...
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle p = 7.0 MPa and exit the rocket exhaust at an absolute pressure p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor γ = 1.22 and a molar mass M = 22 kg
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
For a given outlet pressure , flow rates change depending on the inlet pressure as an arc of hyperbola in a plane parallel to ˙. Usually, Stodola's cone does not represent absolute flow rates and pressures, but rather maximum flow rates and pressures, with the maximum values of the diagram having in this case the value of 1.
The example shown is pneumatic. At sub-millimeter distances, a small movement of the flapper plate results in a large change in flow. The nozzle is fed from a chamber which is in turn fed by a restriction, so changes of flow result in changes of chamber pressure. The nozzle diameter must be larger than the restriction orifice in order to work. [2]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A nozzle is a device designed to control the direction or characteristics of a fluid flow (specially to increase velocity) as it exits (or enters) an enclosed chamber or pipe. A nozzle is often a pipe or tube of varying cross sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used ...