Search results
Results from the WOW.Com Content Network
The proton-exchange membrane is commonly made of materials such as perfluorosulfonic acid (PFSA, sold commercially as Nafion and Aquivion), which minimize gas crossover and short circuiting of the fuel cell. A disadvantage of fluor containing polymers is the fact that during production (and disposal) PFAS products are formed.
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. [1]
Pila de combustible de membrana d'intercanvi de protons; Usage on fa.wikipedia.org پیشنویس:پیل سوختی فسفریک اسید; پیل سوختی اسید فسفریک; Usage on id.wikipedia.org Tequila Harris; Usage on ja.wikipedia.org プロトン伝導性セラミック燃料電池; Usage on no.wikipedia.org PEM-brenselcelle
Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) [3] that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low ...
Electro-chemical reaction Diagram of PEM MEA. A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers. [1] [2]
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
As a proton conductor, BCZYZn05 can be used throughout the cell without inducing parasitic electronic leakage while providing a supportive backbone throughout the cell. Using nano-indentation , the use of BCZYZn05 was found to increase the hardness of the fuel cell components while necessary electrochemical reactivity and conductivity.
In cell respiration, the proton pump uses energy to transport protons from the matrix of the mitochondrion to the inter-membrane space. [1] It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane, because there are more protons outside the matrix than inside.