Search results
Results from the WOW.Com Content Network
3D aerobatic flying is a typically performed by model aircraft which have been configured with a higher thrust-to-weight ratio of more than 1:1. In fixed wing aeroplanes large control surfaces assist the aircraft on performing radical maneuvers which allow the aircraft to turn in tighter than conventional turns.
Most powered model-aircraft, including electric, internal-combustion, and rubber-band powered models, generate thrust by spinning an airscrew. The propeller is the most commonly used device. Propellers generate thrust due to lift generated by the wing-like sections of the blades, which forces air backward.
While its predecessor, the XF5, was a small engine, the XF9-1 prototype is close to the General Electric F110 in size, and is comparable to the Pratt & Whitney F119 in terms of thrust class. With the core that withstands 2,073 K (1,800°C) class Turbine Inlet Temperature, [ 4 ] the XF9-1 produces a high thrust, improving fuel economy at the ...
The NF-16D VISTA testbed aircraft incorporated a multi-axis thrust vectoring (MATV) engine nozzle that provides for more active control of the aircraft in a post-stall situation. As a result, the aircraft is supermaneuverable, retaining pitch and yaw control at angles of attack beyond which the traditional control surfaces cannot change ...
It has similar weight, thrust and duration to Jetex, allowing many old plans for Jetex powered models to be built and flown with the new motors. The Rapier is a single use motor with a cardboard case and a ceramic nozzle, visually closer to a model rocket motor than the original reloadable Jetex.
While a turbojet engine uses all of the engine's output to produce thrust in the form of a hot high-velocity exhaust gas jet, a turbofan's cool low-velocity bypass air yields between 30% and 70% of the total thrust produced by a turbofan system. [80] The net thrust (F N) generated by a turbofan can also be expanded as: [81]
Aircraft with thrust-to-weight ratio greater than 1:1 can pitch straight up and maintain airspeed until performance decreases at higher altitude. [3] A plane can take off even if the thrust is less than its weight as, unlike a rocket, the lifting force is produced by lift from the wings, not directly by thrust from the engine.
If a powered aircraft is generating thrust T and experiencing drag D, the difference between the two, T − D, is termed the excess thrust. The instantaneous performance of the aircraft is mostly dependent on the excess thrust. Excess thrust is a vector and is determined as the vector difference between the thrust vector and the drag vector.