Search results
Results from the WOW.Com Content Network
Reactive nitrogen species act together with reactive oxygen species (ROS) to damage cells, causing nitrosative stress. Therefore, these two species are often collectively referred to as ROS/RNS. Reactive nitrogen species are also continuously produced in plants as by-products of aerobic metabolism or in response to stress. [3]
In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O 2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O 2 H), superoxide (O 2 −), [1] hydroxyl radical (OH.), and singlet oxygen. [2] ROS are pervasive because they are readily produced from O 2, which is ...
The phagolysosome contains reactive oxygen and nitrogen species (ROS and RNS) and hydrolytic enzymes. The compartment is also acidic due to proton pumps (v-ATPases) that transport H + across the membrane, used to denature the bacterial proteins.
Mitochondrial ROS attack DNA readily, generating a variety of DNA damages such as oxidized bases and strand breaks. The major mechanism that cells use to repair oxidized bases such as 8-hydroxyguanine, formamidopyrimidine and 5-hydroxyuracil is base excision repair (BER). [14] BER occurs in both the cell nucleus and in mitochondria.
Respiratory burst (or oxidative burst) is the rapid release of the reactive oxygen species (ROS), superoxide anion (O − 2) and hydrogen peroxide (H 2 O 2), from different cell types. This is usually utilised for mammalian immunological defence, but also plays a role in cell signalling.
The NeuroPace RNS system was approved for use by the FDA in 2013 and is the only medical device for epilepsy that uses responsive neurostimulation. [1] The device is surgically implanted into the patient's head with electrical leads placed near the site in the brain that is believed to be the origin of the patient's seizures.
[14] [15] During ischemia reperfusion, ROS release substantially contribute to the cell damage and death via a direct effect on the cell as well as via apoptotic signals. SOD2 is known to have a capacity to limit the detrimental effects of ROS. As such, SOD2 is important for its cardioprotective effects. [16]
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.