Search results
Results from the WOW.Com Content Network
These thoughts of Einstein would set off a line of research into hidden variable theories, such as the Bohm interpretation, in an attempt to complete the edifice of quantum theory. If quantum mechanics can be made complete in Einstein's sense, it cannot be done locally; this fact was demonstrated by John Stewart Bell with the formulation of ...
The end of the first era of quantum mechanics was triggered by de Broglie's publication of his hypothesis of matter waves, [1]: 268 leading to Schrödinger's discovery of wave mechanics for matter. Accurate predictions of the absorption spectrum of hydrogen ensured wide acceptance of the new quantum theory. [1]: 275
The principle of locality plays a critical role in one of the central results of quantum mechanics. In 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen, with their EPR paradox thought experiment, raised the possibility that quantum mechanics might not be a complete theory.
Modern quantum mechanics implies that uncertainty is inescapable, and thus that Laplace's vision has to be amended: a theory of everything must include gravitation and quantum mechanics. Even ignoring quantum mechanics, chaos theory is sufficient to guarantee that the future of any sufficiently complex mechanical or astronomical system is ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The fact that quantum mechanics violates Bell inequalities indicates that any hidden-variable theory underlying quantum mechanics must be non-local; whether this should be taken to imply that quantum mechanics itself is non-local is a matter of continuing debate. [27] [28]
Einstein's issue with the new quantum mechanics was not just that, with the probability interpretation, it rendered invalid the notion of rigorous causality. After all, as noted above, Einstein himself had introduced random processes in his 1916 theory of radiation.
Einstein, in 1905, when he wrote the Annus Mirabilis papers. 1900 – To explain black-body radiation (1862), Max Planck suggests that electromagnetic energy could only be emitted in quantized form, i.e. the energy could only be a multiple of an elementary unit E = hν, where h is the Planck constant and ν is the frequency of the radiation.