Search results
Results from the WOW.Com Content Network
The metabolic cost of transport includes the basal metabolic cost of maintaining bodily function, and so goes to infinity as speed goes to zero. [1] A human achieves the lowest cost of transport when walking at about 6 kilometres per hour (3.7 mph), at which speed a person of 70 kilograms (150 lb) has a metabolic rate of about 450 watts. [1]
[1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [ note 1 ] The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity .
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where
The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.
The reason for that behavior is the fact that a droplet's falling velocity from a height A to B is equal to the initial velocity that is needed to lift up a droplet from B to A. When performing such an experiment only the height C (instead of D in figure (c)) will be reached which contradicts the proposed theory.