Search results
Results from the WOW.Com Content Network
Express each term of the final sequence y 0, y 1, y 2, ... as the sum of up to two terms of these intermediate sequences: y 0 = x 0, y 1 = z 0, y 2 = z 0 + x 2, y 3 = w 1, etc. After the first value, each successive number y i is either copied from a position half as far through the w sequence, or is the previous value added to one value in the ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine.
Therefore the POF is 1/(2e), which is unbounded. For separate items: the price-of-fairness of max-min fairness is unbounded. For example, suppose Alice has two items with values 1 and e, for some small e>0. George has two items with value e. The capacity is 1. The maximum sum is 1 - when Alice gets the item with value 1 and George gets nothing.
Whenever the sum of the current element in the first array and the current element in the second array is more than T, the algorithm moves to the next element in the first array. If it is less than T, the algorithm moves to the next element in the second array. If two elements that sum to T are found, it stops. (The sub-problem for two elements ...
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.