enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    However, today the classical equation of entropy, = can be explained, part by part, in modern terms describing how molecules are responsible for what is happening: Δ S {\displaystyle \Delta S} is the change in entropy of a system (some physical substance of interest) after some motional energy ("heat") has been transferred to it by fast-moving ...

  3. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    In more detail, Clausius explained his choice of "entropy" as a name as follows: [10] I prefer going to the ancient languages for the names of important scientific quantities, so that they may mean the same thing in all living tongues. I propose, therefore, to call S the entropy of a body, after the Greek

  4. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  5. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."

  6. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions.A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter (or 'downhill' in terms of the temperature gradient).

  7. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    where S is the entropy of the system, k B is the Boltzmann constant, and Ω the number of microstates. At absolute zero there is only 1 microstate possible ( Ω = 1 as all the atoms are identical for a pure substance, and as a result all orders are identical as there is only one combination) and ln ⁡ ( 1 ) = 0 {\displaystyle \ln(1)=0} .

  8. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  9. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The third law of thermodynamics states: As the temperature of a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value. This law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute ...