Search results
Results from the WOW.Com Content Network
Hydrolysis (/ h aɪ ˈ d r ɒ l ɪ s ɪ s /; from Ancient Greek hydro- 'water' and lysis 'to unbind') is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution , elimination , and solvation reactions in which water is the nucleophile .
This process is known as an auto-hydrolysis or a self-cleavage reaction. Spontaneous cleavage in an RNA molecule is much more likely to occur when it is single-stranded. [2] Auto-hydrolysis or self-cleavage reactions take place in basic solutions, where free hydroxide ions in solution can easily deprotonate the 2’ OH of the ribose.
In biochemistry, an esterase is a class of enzyme that splits esters into an acid and an alcohol in a chemical reaction with water called hydrolysis (and as such, it is a type of hydrolase). A wide range of different esterases exist that differ in their substrate specificity, their protein structure, and their biological function.
Carboxypeptidases hydrolyze peptides at the first amide or polypeptide bond on the C-terminal end of the chain. Carboxypeptidases act by replacing the substrate water with a carbonyl (C=O) group. The carboxypeptidase A hydrolysis reaction has two mechanistic hypotheses, via a nucleophilic water and via an anhydride.
Glycoside hydrolases can also be classified according to the stereochemical outcome of the hydrolysis reaction: thus they can be classified as either retaining or inverting enzymes. [6] Glycoside hydrolases can also be classified as exo or endo acting, dependent upon whether they act at the (usually non-reducing) end or in the middle ...
The reaction may otherwise involve the functional groups of the molecule, and is a versatile class of reactions that can occur in acidic or basic conditions or in the presence of a catalyst. This class of reactions is a vital part of life as it is essential to the formation of peptide bonds between amino acids and to the biosynthesis of fatty ...
Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.
The hydrolysis reaction of the carboxyl ester leads to the formation of an acyl-enzyme and free choline. Then, the acyl-enzyme undergoes nucleophilic attack by a water molecule, assisted by the histidine 440 group, liberating acetic acid and regenerating the free enzyme. [18] [19]