Search results
Results from the WOW.Com Content Network
Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid , contain a genome separate from that in the cell nucleus .
For example, 25 chloroplast genomes were sequenced for one molecular phylogenetic study. [1] The flowering plants are especially well represented in complete chloroplast genomes. As of January, 2017, all of their orders are represented except Commelinales, Picramniales, Huerteales, Escalloniales, Bruniales, and Paracryphiales.
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
The traits encoded by this type of DNA, in animals, generally pass from mother to offspring rather than from the father in a process called cytoplasmic inheritance.This is due to the ovum provided from the mother being larger than the male sperm cell, and therefore has more organelles, where the organellar DNA is found.
The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA. Another type of DNA model is the space-filling, or CPK, model.
Since then, hundreds of chloroplast genomes from various species have been sequenced, but they are mostly those of land plants and green algae—glaucophytes, red algae, and other algal groups are extremely underrepresented, potentially introducing some bias in views of "typical" chloroplast DNA structure and content.
The crystal structure of the Ter DNA-Tus protein complex (A) showing the nonblocking and the fork-blocking faces of Tus. (B) A cross-sectional view of the helicase-arresting surface. Replication of the DNA separating the opposing replication forks leaves the completed chromosomes joined as ‘catenanes’ or topologically interlinked circles ...
A nuclear gene is a gene that has its DNA nucleotide sequence physically situated within the cell nucleus of a eukaryotic organism. This term is employed to differentiate nuclear genes, which are located in the cell nucleus, from genes that are found in mitochondria or chloroplasts. The vast majority of genes in eukaryotes are nuclear.